
Inductive Consensus Tree
Protocol (ICTP)

A scalable blockchain algorithm

Presentation by Jessica Taylor
Algorithm by Jessica Taylor and Jack Gallagher

Website & paper: ictp.io

Basic blockchain

● New accounts can
be created by being
sent money

● Transactions signed
by sender

● Multiple transactions
per block

● POW or POS

Alice: 100
Bob: 30

Alice: 70
Bob: 60

Tx: Alice sends 30 to Bob

(arrow indicates inclusion of hash code of first block)

Scaling of basic blockchain

● Balances for non-genesis blocks don’t have to be stored, they can be derived
from the transaction history.

● Every transaction has to be processed by every account.
● Let m = number of accounts, n = number of transactions. Total work is

~O(mn).
● Each account needs to store O(n) data.

Separating sends and receives

● This means each transaction only modifies a single account
● Similar to actor model (Erlang): message-passing between state-carrying

actors, with time delay between send and receive
● Will make data pipelining easier when expanding to a tree

Alice: 100
Bob: 30

Alice: 70
Bob: 30

Tx: Alice sends 30 to Bob

Alice: 70
Bob: 60

Tx: Bob receives 30 from Alice

Balances and transactions stored in a Merkle Patricia Tree

Ver: 0 Ver: 1 Ver: 2

Ver: 0

Ver: 0 Ver: 0

Bal: 30
Pub key: ...Bal: 100

Pub key: ...

Ver: 1

Ver: 1

Bal: 70
Pub key: ...

New tx: send
30 to Bob

A

lice

B B

ob

A

lice

Ver: 2
A

Ver: 2

Bal: 60
Pub key: ...

New tx:
receive 30
from Alice

B

ob
Branch
quorum node

Leaf quorum
node

Main block

Explanation

● Persistent data structure, at most O(log m) new nodes created per transaction
● Accounts are actually indexed by hexadecimal strings representing account

public key hash codes, not English names (Alice/Bob)
● Transactions can be verified by checking against the previous Merkle-Patricia

tree
● Store a set of received transaction hash codes, so the same send won’t be

received twice
● For scalability to many fields, the account state can be stored as a Merkle

Patricia tree
● Data can be stored in a DHT, but everyone needs to check it
● This requires O(m n log(m)) work for m accounts & n transactions, not an

improvement!

Pool members sign valid new branch quorum nodes

Ver: 0 Ver: 1 Ver: 2

Ver: 0

Ver: 0 Ver: 0

Bal: 30
Stake: 80

Bal: 100
Stake: 60

Ver: 1
Sigs: ...

Ver: 1
Sigs: ...

Bal: 70
Stake: 60

New tx: send
30 to Bob

A

lice

B B

ob

A

lice

Ver: 2
Sigs: ...

A

Ver: 2
Sigs: ...

Bal: 60
Stake: 80

New tx:
receive 30
from Alice

B

ob

Pools and quorums

● Pool: a randomly-selected set of accounts
● Accounts with more stake are more likely to be selected
● A pool is chosen for each quorum node
● A branch quorum node may contain signatures by a threshold number of its

corresponding pool; “quorum” refers to the threshold set of pool members
● Main idea: cooperative pool members only sign valid nodes. An attacker

would need to own a substantial fraction of stake to attain a quorum in any
quorum node with non-negligible probability. But if they have stake, they have
a financial interest in the system continuing to work.

● As a result, checking whether there’s a quorum is sufficient for checking
whether the node (and its descendents) are valid, almost certainly

● Pool members check if each descendent node has a quorum; if it does, then
it’s considered validated; otherwise, they check the node recursively

Scalability

● Let p be the pool size (e.g. 1000).
● A new transaction will be checked by O(p) parties, forming a signed quorum

node. (This node may amalgamate multiple transactions, call this number q)
● The signed quorum node has to be checked by O(p) parties, forming a parent

node of this node.
● Checking the parents of the parents can be ignored, it’s a constant factor

(exponential decrease).
● Total work is O(n(p + p^2/q)) = O(np(1 + p/q))
● p scales logarithmically with n, so this is O(n polylog(n))
● The constants matter (worked out in the paper), tx cost ~= $0.0002

Data pipeline

0xa483

Bal: 100

0xa4cb

Bal: 70

0xa4

0xab42

Bal: 15

0xabfd

Bal: 128

0xab

0xd571

Bal: 43

0xd562

Bal: 98

0xd5

0xdc5f

Bal: 49

0xdce7

Bal: 167

0xdc

0xa 0xd

0x

Ver: 538

Data pipeline explanation

● Data is processed in parallel
● Nodes are processed, possibly signed, and sent to parent pools
● Parent pool members check child nodes, create a parent node, and sign the

node if it’s valid (and contains enough total data for checking the signatures to
be cheaper than checking the data)

● Top branch quorum node (0x) is sent to signers/miners for inclusion in next
main block (proof of stake)

● Total time taken is linear in the depth of the tree, O(log m), approximately
minutes per block

● Limit on number of transactions is based on the number of pool members and
their computation/communication speed; if there are enough pool members,
everyone can do a transaction in a single block!

Details

● Data stored in IPFS-like DHT, indexed by hash code
○ New quorum nodes are stored by members of the corresponding pool, ensuring data

availability
○ Highly-accessed nodes must have their data replicated
○ Total storage is O(n) not O(mn) as in a standard blockchain

● Incentives
○ Transaction fees are collected and distributed to pool members, miners, signers, data storers
○ Punishments for pool members who sign invalid nodes, and normal PoS punishments

● Pseudorandom seed is randomized every so often using threshold
cryptography (details in paper)

● Pools are occasionally reshuffled, to reflect changes in account stake (stake
is escrowed for the duration of the period between pool shuffles)

Extra features

● Smart contracts
○ Account nodes may be represented by a contract, rather than a public key
○ Contracts send/receive messages as in the actor model, and can store persistent data
○ Receives are handled similar to in Ethereum, there are methods for receiving different

messages
○ Accounts may have extra “contract data” attached
○ Contracts are encoded in WebAssembly, a VM that many languages can be compiled to

● Privacy
○ Separate account public state and private state
○ Use zk-SNARKs to prove validity of transformations to account states, as in Zcash
○ See paper for details
○ Note: this makes implementation a lot harder; will not be included in the first version

Development roadmap

● Start with auditable centralized system with no contracts or privacy
● 3 possible improvements

○ Make it distributed
○ Add contracts
○ Add privacy (this is the hardest)

Creation of new cryptocurrency

● Current name is “Mercatoria”
● Idea: implement a new cryptocurrency using this algorithm
● Existing currencies, e.g. Bitcoin and Ethereum, must implement scaling

features to compete with Mercatoria
● So, the value of Mercatoria is based on the expectation that existing

currencies won’t implement these features for a while
● Ideally, scaling features are eventually implemented in existing blockchains,

and Mercatoria is usable as a scalable currency in the meantime
● Alternatively, if Mercatoria “wins”, existing currencies may be ported to

Mercatoria as smart contracts (given Mercatoria’s generality and scalability)

Conclusion

● This is MUCH more scalable than any alternative proposal, e.g. Ethereum’s
current sharding proposal

● It easily scales to billions of transactions per day (multiple per person), in
contrast to current cryptocurrencies which choke on low millions per day with
huge transaction fees

● It can support micropayments, decentralized Internet, auditable government
● See our paper for technical details (ictp.io)

