Inductive Consensus Tree
Protocol (ICTP)

A scalable blockchain algorithm

Presentation by Jessica Taylor
Algorithm by Jessica Taylor and Jack Gallagher
Website & paper: ictp.io

Basic blockchain

Alice: 100

Bob: 30

Alice: 70
Bob: 60

Tx: Alice sends 30 to Bob

(arrow indicates inclusion of hash code of first block)

New accounts can
be created by being
sent money
Transactions signed
by sender

Multiple transactions
per block

POW or POS

Scaling of basic blockchain

e Balances for non-genesis blocks don’t have to be stored, they can be derived
from the transaction history.

e Every transaction has to be processed by every account.

e Let m = number of accounts, n = number of transactions. Total work is
~O(mn).

e Each account needs to store O(n) data.

Separating sends and receives

Alice: 100
Bob: 30

Alice: 70
Bob: 30

Tx: Alice sends 30 to Bob

Alice: 70
Bob: 60

Tx: Bob receives 30 from Alice

e This means each transaction only modifies a single account
e Similar to actor model (Erlang): message-passing between state-carrying

actors, with time delay between send and receive

e Will make data pipelining easier when expanding to a tree

Balances and transactions stored in a Merkle Patricia Tree

Ver: 2

Main block

\ Branch

quorum node

Leaf quorum
node

R e

Ver: 0 - Ver: 1 Ver: 2
Ver: 0 Ver: 1
B B A
A:/ \ A B
Ver: 0 Ver: 0 Ver: 1 Ver: 2
lice / \ lice
| ;bl 30 / ob
al:
Bal: 100 Pub key: ... Bal: 70 Bal: 60
Pub key: ... Pub key: ... Pub key: ...
New tx: send New tx:
30 to Bob receive 30

from Alice

Explanation

e Persistent data structure, at most O(log m) new nodes created per transaction

e Accounts are actually indexed by hexadecimal strings representing account
public key hash codes, not English names (Alice/Bob)

e Transactions can be verified by checking against the previous Merkle-Patricia
tree

e Store a set of received transaction hash codes, so the same send won’t be
received twice

e For scalability to many fields, the account state can be stored as a Merkle
Patricia tree

e Data can be stored in a DHT, but everyone needs to check it

e This requires O(m n log(m)) work for m accounts & n transactions, not an
improvement!

Pool members sign valid new branch quorum nodes

Ver: 0 - Ver: 1 Ver: 2
\ / Ver: ;
Ver: 0 \S/Iegrs1 Sig.s:
B D
Ver: 0 Ver: 0 Ver: 1 Ver: 2
i / \ Sigs: ... Sigs: ...
ice ob : o j
ice
Bal: 100 Bal: 30 / Bal: 60
Stake: 60 Stake: 80 Bal: 70 Stake: 80
Stake: 60
New tx:
New tx: send receive 30
30 to Bob from Alice

Pools and quorums

Pool: a randomly-selected set of accounts

Accounts with more stake are more likely to be selected

A pool is chosen for each quorum node

A branch quorum node may contain signatures by a threshold number of its
corresponding pool; “quorum” refers to the threshold set of pool members
Main idea: cooperative pool members only sign valid nodes. An attacker
would need to own a substantial fraction of stake to attain a quorum in any
quorum node with non-negligible probability. But if they have stake, they have
a financial interest in the system continuing to work.

As a result, checking whether there’s a quorum is sufficient for checking
whether the node (and its descendents) are valid, almost certainly

Pool members check if each descendent node has a quorum; if it does, then
it's considered validated; otherwise, they check the node recursively

Scalability

e Letp be the pool size (e.g. 1000).

e A new transaction will be checked by O(p) parties, forming a signed quorum
node. (This node may amalgamate multiple transactions, call this number q)

e The signed quorum node has to be checked by O(p) parties, forming a parent
node of this node.

e Checking the parents of the parents can be ignored, it's a constant factor
(exponential decrease).

e Total work is O(n(p + p*2/q)) = O(np(1 + p/q))

e p scales logarithmically with n, so this is O(n polylog(n))

e The constants matter (worked out in the paper), tx cost ~= $0.0002

Ver: 538

Data pipeline
Ox
Oxa Oxd
Oxa4 Oxab Oxd5 Oxdc
0Oxa483 Oxadcb Oxab42 Oxabfd Oxd571 0Oxd562 Oxdchf Oxdce7

Bal: 100 | | Bal: 70 Bal: 15 Bal: 128 Bal: 43 Bal: 98 Bal: 49 Bal: 167

Data pipeline explanation

Data is processed in parallel

Nodes are processed, possibly signed, and sent to parent pools

Parent pool members check child nodes, create a parent node, and sign the
node if it's valid (and contains enough total data for checking the signatures to
be cheaper than checking the data)

Top branch quorum node (0x) is sent to signers/miners for inclusion in next
main block (proof of stake)

Total time taken is linear in the depth of the tree, O(log m), approximately
minutes per block

Limit on number of transactions is based on the number of pool members and
their computation/communication speed; if there are enough pool members,
everyone can do a transaction in a single block!

Detalls

Data stored in IPFS-like DHT, indexed by hash code

o New quorum nodes are stored by members of the corresponding pool, ensuring data
availability

o Highly-accessed nodes must have their data replicated

o Total storage is O(n) not O(mn) as in a standard blockchain

Incentives
o Transaction fees are collected and distributed to pool members, miners, signers, data storers
o Punishments for pool members who sign invalid nodes, and normal PoS punishments

Pseudorandom seed is randomized every so often using threshold
cryptography (details in paper)

Pools are occasionally reshuffled, to reflect changes in account stake (stake
is escrowed for the duration of the period between pool shuffles)

Extra features

e Smart contracts

o Account nodes may be represented by a contract, rather than a public key

o Contracts send/receive messages as in the actor model, and can store persistent data

o Receives are handled similar to in Ethereum, there are methods for receiving different
messages

o Accounts may have extra “contract data” attached
o Contracts are encoded in WebAssembly, a VM that many languages can be compiled to

e Privacy

o Separate account public state and private state

o Use zk-SNARKS to prove validity of transformations to account states, as in Zcash
o See paper for details

o Note: this makes implementation a lot harder; will not be included in the first version

Development roadmap

e Start with auditable centralized system with no contracts or privacy

e 3 possible improvements

o Make it distributed
o Add contracts
o Add privacy (this is the hardest)

Creation of new cryptocurrency

e Current name is “Mercatoria”

e Idea: implement a new cryptocurrency using this algorithm

e EXxisting currencies, e.g. Bitcoin and Ethereum, must implement scaling
features to compete with Mercatoria

e So, the value of Mercatoria is based on the expectation that existing
currencies won’t implement these features for a while

e Ideally, scaling features are eventually implemented in existing blockchains,
and Mercatoria is usable as a scalable currency in the meantime

e Alternatively, if Mercatoria “wins”, existing currencies may be ported to
Mercatoria as smart contracts (given Mercatoria’s generality and scalability)

Conclusion

e This is MUCH more scalable than any alternative proposal, e.g. Ethereum’s
current sharding proposal

e |t easily scales to billions of transactions per day (multiple per person), in
contrast to current cryptocurrencies which choke on low millions per day with
huge transaction fees

e It can support micropayments, decentralized Internet, auditable government

e See our paper for technical details (ictp.io)

